WEIGHT FORMULAS FOR TERNARY MELAS CODES

GERARD VAN DER GEER, RENÉ SCHOOF, AND MARCEL VAN DER VLUGT

Abstract

In this paper we derive a formula for the frequencies of the weights in ternary Melas codes and we illustrate this formula by computing a table of examples.

1. Introduction

Let $q=p^{m}$, where p is a prime, and let α be a generator of the multiplicative group \mathbf{F}_{q}^{*}. Consider the cyclic code C over \mathbf{F}_{q} of length $q-1$ with generator polynomial $(X-\alpha)\left(X-\alpha^{-1}\right)$. The dual code C^{\perp} is cyclic with zeros $1, \alpha^{2}, \alpha^{3}, \ldots, \alpha^{q-3}$, which are zeros of the polynomials

$$
\sum_{i=0}^{q-2}\left(a \alpha^{i}+b \alpha^{-i}\right) X^{i} \in \mathbf{F}_{q}[X] /\left(X^{q-1}-1\right) \quad \text { with } a, b \in \mathbf{F}_{q} .
$$

This implies that the code

$$
D=\left\{(a x+b / x)_{x \in \mathbf{F}_{q}^{*}}: a, b \in \mathbf{F}_{q}\right\}
$$

satisfies $D=C^{\perp}$. The classical Melas code $M(q)$ is defined as the restriction to \mathbf{F}_{p} of the code C (see [5, 4]). By Delsarte's theorem [4, p. 208] we have

$$
\operatorname{Tr}\left(C^{\perp}\right)=\left(\left.C\right|_{\mathbf{F}_{p}}\right)^{\perp}
$$

where Tr is the trace map from \mathbf{F}_{q} to \mathbf{F}_{p}. If we substitute $C^{\perp}=D$ and $\left.C\right|_{\mathbf{F}_{p}}=M(q)$ in Delsarte's theorem, we find

$$
\left\{(\operatorname{Tr}(a x+b / x))_{x \in \mathbf{F}_{q}^{*}}: a, b \in \mathbf{F}_{q}\right\}=M(q)^{\perp}
$$

To ensure injectivity of the trace map, we require $2 m+1<q$. Then the dual code $M(q)^{\perp}$ has dimension $2 m$.

In $[6,1]$ we determined the weight distribution of $M(q)^{\perp}$ for $p=2$ and 3. Then, by the MacWilliams identities and the Eichler-Selberg trace formula we derived a formula for the number A_{i} of code words of weight i in $M(q)$ involving traces of Hecke operators on certain spaces of cusp forms [6, Theorem 4.2; 1, Theorem 2.3]. Especially for $p=3$, this was done in a rather concise way, only announcing results and further illustrations. In this paper we will work out the case $p=3$ and illustrate the result by computing some weight formulas for ternary Melas codes.

[^0]An outline of this paper is as follows. In $\S 2$ we derive an expression for traces of Hecke operators on $S_{k}\left(\Gamma_{1}(3)\right)$. In $\S 3$ we prove the weight distribution theorem for ternary Melas codes. Then, in the next sections, we compute traces of Hecke operators, first for even k, then for odd k. Finally, in $\S 6$ we give a table of weight formulas for $M(q)$.

The references on coding theory can be found in the book of MacWilliams and Sloane [4]. For a systematic introduction to cusp forms and Hecke operators we refer to the books by S. Lang [2] and J.-P. Serre [8]. In [6, Theorem 2.2] the reader can find the precise form of the Eichler-Selberg trace formula, as we use it. Our notation in this paper links up with the notation in [6].

2. Traces of Hecke operators on $S_{k}\left(\Gamma_{1}(3)\right)$

For the space of cusp forms $S_{k}\left(\Gamma_{1}(3)\right)$ we have

$$
S_{k}\left(\Gamma_{1}(3)\right)=S_{k}\left(\Gamma_{0}(3), 1\right) \oplus S_{k}\left(\Gamma_{0}(3), \omega\right)
$$

where 1 is the trivial character on $(\mathbf{Z} / 3 \mathbf{Z})^{*}$ and ω is the quadratic character on $(\mathbf{Z} / 3 \mathbf{Z})^{*}$. Both characters have conductor 3, and we extend them to $\mathbf{Z} / 3 \mathbf{Z}$ by defining them 0 on the residue class of 0 modulo 3 . Actually,

$$
S_{k}\left(\Gamma_{1}(3)\right)= \begin{cases}S_{k}\left(\Gamma_{0}(3), 1\right) & \text { for even } k \\ S_{k}\left(\Gamma_{0}(3), \omega\right) & \text { for odd } k\end{cases}
$$

Now we can apply the Eichler-Selberg trace formula for $S_{k}\left(\Gamma_{0}(3), \chi\right)$, expressing traces of Hecke operators in class numbers of binary quadratic forms.

Proposition 2.1. Let $q=3^{m}$ with $m \geq 1$, and denote by $\operatorname{Tr} T_{q}$ the trace of the Hecke operator T_{q} acting on the space of cusp forms $S_{k}\left(\Gamma_{1}(3)\right)$. Then

$$
\operatorname{Tr} T_{q}= \begin{cases}-\sum_{t} \frac{\rho^{k-1}-\bar{\rho}^{k-1}}{\rho-\bar{\rho}} H\left(t^{2}-4 q\right)-1 & \text { for } k \geq 3 \\ -\sum_{t} \frac{\rho^{k-1}-\bar{\rho}^{k-1}}{\rho-\bar{\rho}} H\left(t^{2}-4 q\right)-1+q & \text { for } k=2\end{cases}
$$

The summation variable t runs over $\left\{t \in \mathbf{Z}: t^{2}<4 q\right.$ and $\left.t \equiv 1(\bmod 3)\right\}$. The symbols ρ and $\bar{\rho}$ indicate the zeros of the polynomial $X^{2}-t X+q$, and $H\left(t^{2}-4 q\right)$ is the Kronecker class number of $t^{2}-4 q$.
Proof. We start from the Eichler-Selberg trace formula as stated in [6, Theorem 2.2] and employ it for $S_{k}\left(\Gamma_{0}(3), \chi\right)$, where $\chi=1$ for even k and $\chi=\omega$ for odd k. In the notation of [6, Theorem 2.2], the contribution of A_{1} is 0 . As to the contribution of A_{2}, we notice that $\mu(t, f, n)=\chi(t)$. It follows that

$$
A_{2}=-\sum_{\substack{t \in \mathbf{Z} \\ t^{2}<4 q, t=1(\bmod 3)}} \frac{\rho^{k-1}-\bar{\rho}^{k-1}}{\rho-\bar{\rho}} H\left(t^{2}-4 q\right)
$$

by adding together terms with $t \equiv 1(\bmod 3)$ and $t \equiv 2(\bmod 3)$. Furthermore, $A_{3}=-1$ in all cases, and $A_{4}=q$ for $k=2$ and $\chi=1$, while $A_{4}=0$ in the other cases. Altogether, we get the above-mentioned formulas.

The numbers $\left(\rho^{k-1}-\bar{\rho}^{k-1}\right) /(\rho-\bar{\rho})$ are symmetric expressions in ρ and $\bar{\rho}$, so they can be written as polynomials $Q_{k-2}(t, q)$ in $t=\rho+\bar{\rho}$ and $q=\rho \bar{\rho}$.

We have $Q_{0}(t, q)=1$ and $Q_{1}(t, q)=t$. From $\rho^{k+1}-\bar{\rho}^{k+1}=(\rho+\bar{\rho})\left(\rho^{k}-\bar{\rho}^{k}\right)$ $-\rho \bar{\rho}\left(\rho^{k-1}-\bar{\rho}^{k-1}\right)$ we get the recurrence relation

$$
\begin{equation*}
Q_{k}(t, q)=t Q_{k-1}(t, q)-q Q_{k-2}(t, q) \quad \text { for } k \geq 2 \tag{1}
\end{equation*}
$$

The polynomial Q_{k} is, as a polynomial in ρ and $\bar{\rho}$, homogeneous of degree k. Therefore, it is also homogeneous of degree k as a polynomial in t and q, provided we assign a weight 1 to the variable t and a weight 2 to the variable q. Note that Q_{k} is monic in t, and has integer coefficients and terms $q^{r} t^{k-2 r}$, where $0 \leq r \leq[k / 2]$. It follows that we can write

$$
\begin{equation*}
t^{i}=\sum_{\substack{j=0 \\ j \text { even }}}^{i} \lambda_{i, j} Q_{i-j}(t, q) q^{j / 2} \tag{2}
\end{equation*}
$$

The $\lambda_{i, j} \in \mathbf{Z}$ satisfy

$$
\begin{aligned}
& \lambda_{i, j}=0 \text { for } j \notin\{0,1, \ldots, i\} \text { or } j \text { odd } \\
& \lambda_{0,0}=\lambda_{1,0}=1
\end{aligned}
$$

while the recurrence relation for Q_{k} induces the recurrence relation

$$
\begin{equation*}
\lambda_{i+1, j}=\lambda_{i, j-2}+\lambda_{i, j} \tag{3}
\end{equation*}
$$

Now we rewrite the expressions for $\operatorname{Tr} T_{q}$ on $S_{k}\left(\Gamma_{1}(3)\right)$ in Proposition 2.1 as
(4) $\operatorname{Tr} T_{q}= \begin{cases}-\sum_{t} Q_{k-2}(t, q) H\left(t^{2}-4 q\right)-1 & \text { for odd } k \text { and even } k \geq 4, \\ -\sum_{t} H\left(t^{2}-4 q\right)-1+q & \text { for } k=2 .\end{cases}$

From the formula for $\operatorname{dim} S_{k}\left(\Gamma_{0}(N), \chi\right)$ in [6] we easily derive:

$$
\operatorname{dim} S_{k}\left(\Gamma_{1}(3)\right)= \begin{cases}\operatorname{dim} S_{k}\left(\Gamma_{0}(3), \omega\right)=[k / 3]-1 & \text { for odd } k \tag{5}\\ \operatorname{dim} S_{k}\left(\Gamma_{0}(3), 1\right)=[k / 3]-1 & \text { for even } k \geq 4 \\ 0 & \text { for } k=2\end{cases}
$$

Because $\operatorname{dim} S_{2}\left(\Gamma_{1}(3)\right)=0$, one has

$$
\operatorname{Tr} T_{2}=-\sum_{t} H\left(t^{2}-4 q\right)-1+q=0
$$

3. The weight distribution of ternary Melas codes

Let $q=3^{m}$ with $m \geq 2$. In [1] we derived the weight distribution of the dual ternary Melas code $M(q)^{\perp}$:

The nonzero weights of $M(q)^{\perp}$ are $w_{t}=2(q-1+t) / 3$, where $t \in \mathbf{Z}, t^{2}<4 q$, and $t \equiv 1(\bmod 3)$. For $t \neq 1$ the frequency of w_{t} is $(q-1) H\left(t^{2}-4 q\right)$; the weight $w_{1}=2 q / 3$ has frequency $(q-1)\{H(1-4 q)+2\}$.
Using the MacWilliams identities and the Eichler-Selberg trace formula, we obtain an expression for the weight distribution of $M(q)$. We will elaborate the result announced in [1, Theorem 2.3].

Theorem 3.1. The number A_{i} of code words of weight i in the Melas code $M(q)$ is given by

$$
\begin{aligned}
q^{2} A_{i}= & \binom{q-1}{i} 2^{i}+2(q-1) \sum_{s=0}^{i}(-1)^{s}\binom{2 q / 3}{s}\binom{q / 3-1}{i-s} 2^{i-s} \\
& -(q-1) \sum_{j=0}^{i} W_{i, j}(q)\left(1+\tau_{j+2}(q)\right)
\end{aligned}
$$

where the polynomials $W_{i, j}(q)$ are defined for $0 \leq j \leq i$ by

$$
\begin{gathered}
W_{0,0}=1, \quad W_{1,0}=0, \quad W_{1,1}=-2 \\
(i+1) W_{i+1, j}=-i W_{i, j}-2 q W_{i, j+1}-2 W_{i, j-1}-2(q-i) W_{i-1, j}
\end{gathered}
$$

(otherwise, the $W_{i, j}$ are 0).
By $\tau_{k}(q)$ we denote for $k \geq 3$ the trace of the Hecke operator T_{q} on $S_{k}\left(\Gamma_{1}(3)\right)$. For convenience we let $\tau_{2}(q)=-q$.
Proof. This proof is a modification of the proof of the analogous theorem in [6]. For $0 \leq i \leq q-1$, let $P_{i}(X)$ be the i th Krawtchouk polynomial

$$
\begin{equation*}
P_{i}(X ; q-1,3)=\sum_{s=0}^{i}(-1)^{s}\binom{X}{s}\binom{q-1-X}{i-s} 2^{i-s} \tag{6}
\end{equation*}
$$

These polynomials satisfy the recurrence relation

$$
(i+1) P_{i+1}(X)=(2 q-2-i-3 X) P_{i}(X)-2(q-i) P_{i-1}(X) .
$$

We define $f_{i}(X)=P_{i}(2(q-1+X) / 3)$; then

$$
f_{0}(X)=P_{0}(2(q-1+X) / 3)=1, \quad f_{1}(X)=P_{1}(2(q-1+X) / 3)=-2 X
$$

and the recurrence relation becomes

$$
\begin{equation*}
(i+1) f_{i+1}(X)=(-i-2 X) f_{i}(X)-2(q-i) f_{i-1}(X) \tag{7}
\end{equation*}
$$

It follows that $f_{i}(X)$ has degree i, and we write

$$
\begin{equation*}
f_{i}(X)=\sum_{k=0}^{i} \pi_{i}(k) X^{k} \tag{8}
\end{equation*}
$$

Now $\pi_{0}(0)=1, \pi_{1}(0)=0, \pi_{1}(1)=-2$, and from (7) we derive

$$
\begin{equation*}
(i+1) \pi_{i+1}(k)=-i \pi_{i}(k)-2 \pi_{i}(k-1)-2(q-i) \pi_{i-1}(k) \tag{9}
\end{equation*}
$$

We define $\pi_{i}(k)=0$ for cases other than $0 \leq k \leq i$. When we apply the MacWilliams identities to $M(q)^{\perp}$ and $M(q)$, we get

$$
q^{2} A_{i}=\sum_{t} \text { frequency }\left(w_{t}\right) P_{i}(2(q-1+t) / 3)+P_{i}(0)
$$

where t runs over $\left\{t \in \mathbf{Z}: t^{2}<4 q\right.$ and $\left.t \equiv 1(\bmod 3)\right\}$. Using the weight distribution of $M(q)^{\perp}$ and the polynomials f_{i} introduced above, we find

$$
\frac{q^{2}}{q-1} A_{i}=\sum_{t} H\left(t^{2}-4 q\right) f_{i}(t)+2 f_{i}(1)+\frac{P_{i}(0)}{q-1}
$$

From definition (6) we see that $P_{i}(0)=\binom{q-1}{i} 2^{i}$ and

$$
f_{i}(1)=P_{i}\left(\frac{2 q}{3}\right)=\sum_{s=0}^{i}(-1)^{s}\binom{2 q / 3}{s}\binom{q / 3-1}{i-s} 2^{i-s} .
$$

From (8) we obtain

$$
\sum_{t} H\left(t^{2}-4 q\right) f_{i}(t)=\sum_{j=0}^{i} \pi_{i}(j) \sum_{t} t^{j} H\left(t^{2}-4 q\right) .
$$

By formula (2) this becomes

$$
\sum_{j=0}^{i} \pi_{i}(j) \sum_{\substack{k=0 \\ k \text { even }}}^{j} \lambda_{j, k} q^{k / 2} \sum_{t} Q_{j-k}(t, q) H\left(t^{2}-4 q\right)
$$

Using (4) combined with the fact that, according to (5), $\operatorname{Tr} T_{q}=0$ on $S_{2}\left(\Gamma_{1}(3)\right)$, and remembering our convention that $\tau_{2}(q)=-q$, we get

$$
\begin{equation*}
\sum_{j=0}^{i} \pi_{i}(j) \sum_{\substack{k=0 \\ k \text { even }}}^{j} \lambda_{j, k} q^{k / 2}\left(-1-\tau_{j-k+2}(q)\right) \tag{10}
\end{equation*}
$$

We define $W_{i, j}(q)=\sum_{k=0, k \text { even }}^{i-j} \pi_{i}(k+j) \lambda_{k+j, k} q^{k / 2}$. By changing the horizontal summation in (10) into a diagonal summation, the expression (10) becomes

$$
\sum_{j=0}^{i} W_{i, j}(q)\left(-1-\tau_{j+2}(q)\right)
$$

Putting all this together, we get the announced formula for $q^{2} A_{i}$.
As to the polynomials $W_{i, j}(q)$, we easily see that $W_{0,0}=1, W_{1,0}=0$, and $W_{1,1}=-2$. The recurrence relation for $W_{i, j}$ follows by writing out the definition of $(i+1) W_{i+1, j}$ and using the recurrence relations (9) and (3) for $(i+1) \pi_{i+1}(k+j)$ and $\lambda_{k+j, k}$.

We conclude this section by noticing that to obtain more explicit expressions for A_{i}, we have to compute the traces of the Hecke operators $\tau_{k}(q)$. This is the subject of the next two sections.

4. The computation of $\tau_{k}(q)$ For k even, $k \geq 4$

As always, we take $q=3^{m}$ with $m \geq 2$. By convention, we have that $\tau_{2}(q)=-q$, while for $k \geq 3$ the trace of the Hecke operator T_{q} acting on the space $S_{k}\left(\Gamma_{1}(3)\right)$ is indicated by $\tau_{k}(q)$. For even k, the space $S_{k}\left(\Gamma_{1}(3)\right)=$ $S_{k}\left(\Gamma_{0}(3), 1\right)$ and the theory of newforms of Atkin and Lehner [2] provides us with a decomposition

$$
S_{k}\left(\Gamma_{0}(3), 1\right)=S_{k}\left(\Gamma_{0}(3)\right)^{\text {new }} \oplus S_{k}\left(\Gamma_{0}(3)\right)^{\text {old }}
$$

which is respected by the Hecke operators. The old part is spanned by the forms $f(z)$ and $f(3 z)$, where $f(z)$ runs over a basis of simultaneous eigenforms of $S_{k}\left(\Gamma_{0}(1)\right)=S_{k}\left(\operatorname{SL}_{2}(\mathbf{Z})\right)$.

Proposition 4.1. On $S_{k}\left(\Gamma_{0}(3)\right)^{\text {old }}$ we have

$$
\begin{aligned}
\operatorname{Tr} T_{1}= & 2 \operatorname{dim} S_{k}\left(\mathrm{SL}_{2}(\mathbf{Z})\right) \\
\operatorname{Tr} T_{3}= & \operatorname{Tr}\left(T_{3} \text { on } S_{k}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)\right), \\
\operatorname{Tr} T_{3^{m}}= & \operatorname{Tr}\left(T_{3^{m}} \text { on } S_{k}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)\right) \\
& -3^{k-1} \operatorname{Tr}\left(T_{3^{m-2}} \text { on } S_{k}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)\right) \quad \text { for } m \geq 2
\end{aligned}
$$

Proof. The subspace $S_{k}\left(\Gamma_{0}(3)\right)^{\text {old }}$ is a direct sum of 2-dimensional complex vector spaces with basis $\{f(z), f(3 z)\}$, where $f(z)$ is a simultaneous eigenform for all T_{n} in $S_{k}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)$. The operator T_{1} is the identity map, so

$$
\operatorname{Tr} T_{1}=\operatorname{dim} S_{k}\left(\Gamma_{0}(3)\right)^{\text {old }}=2 \operatorname{dim} S_{k}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)
$$

Let $f(z)=\sum_{m=1}^{\infty} a_{m} e^{2 \pi i m z}$; then by applying the formula for T_{n} on $S_{k}\left(\Gamma_{0}(3), 1\right)$ (see [6]) we have

$$
T_{3}(f(z))=\sum_{m \geq 1} a_{3 m} e^{2 \pi i m z}
$$

while on $S_{k}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)$ we have

$$
T_{3}(f(z))=\lambda f(z)=\sum_{m \geq 1} a_{3 m} e^{2 \pi i m z}+3^{k-1} \sum_{m \geq 1} a_{m} e^{3(2 \pi i m z)}
$$

For T_{3} acting on the 2-dimensional summand $\langle f(z)\rangle \oplus\langle f(3 z)\rangle$, we obtain

$$
T_{3}(f(z))=\lambda f(z)-3^{k-1} f(3 z) \quad \text { and } \quad T_{3}(f(3 z))=f(z)
$$

Then on $\langle f(z)\rangle \oplus\langle f(3 z)\rangle$ the operator T_{3} has eigenvalues α and β with $\alpha+\beta=\lambda$ and $\alpha \beta=3^{k-1}$. The eigenvalues of T_{3} acting on $S_{k}\left(\Gamma_{0}(3)\right)^{\text {old }}$ are precisely the α and β for all possible eigenvalues λ of T_{3} acting on $S_{k}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)$. We conclude that

$$
\operatorname{Tr} T_{3}=\sum(\alpha+\beta)=\sum \lambda=\operatorname{Tr}\left(T_{3} \text { on } S_{k}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)\right)
$$

From the product formula $T_{n} \cdot T_{m}=\sum_{d \mid m, n} d^{k-1} T_{m n / d^{2}}$ we derive

$$
\begin{equation*}
T_{3^{m}}=T_{3} \cdot T_{3^{m-1}}-3^{k-1} T_{3^{m-2}} \quad \text { for } m \geq 2 \tag{11}
\end{equation*}
$$

on $S_{k}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)$. Thus, the eigenvalue $\lambda_{3^{m}}$ of $T_{3^{m}}$ on $S_{k}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)$ corresponding to λ is

$$
\lambda \cdot \lambda_{3^{m-1}}-3^{k-1} \cdot \lambda_{3^{m-2}} .
$$

While $\lambda=\alpha+\beta$ and $3^{k-1}=\alpha \beta$, it follows by induction that the eigenvalue of $T_{3^{m}}$ on $S_{k}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)$ corresponding to $\lambda=\alpha+\beta$ is $\sum_{i=0}^{m} \alpha^{i} \beta^{m-i}$.

Furthermore, it holds that $T_{3^{m}}=\left(T_{3}\right)^{m}$ on $S_{k}\left(\Gamma_{0}(3), 1\right)$, so $T_{3^{m}}$ has eigenvalues α^{m} and β^{m} on $\langle f(z)\rangle \oplus\langle f(3 z)\rangle$. Adding up the relation

$$
\alpha^{m}+\beta^{m}=\sum_{i=0}^{m} \alpha^{i} \beta^{m-i}-\alpha \beta \sum_{i=0}^{m-2} \alpha^{i} \beta^{m-2-i}
$$

for all pieces of $S_{k}\left(\Gamma_{0}(3)\right)^{\text {old }}$, we obtain the stated result for $T_{3^{m}}, m \geq 2$.
Remark 4.2. From the dimension formula [6, Corollary 2.3] we conclude

$$
\operatorname{dim} S_{2}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)=0
$$

$$
\operatorname{dim} S_{k}\left(\mathbf{S L}_{2}(\mathbf{Z})\right)= \begin{cases}{[k / 12]} & \text { for } k \not \equiv 2(\bmod 12), \tag{12}\\ {[k / 12]-1} & \text { for } k \equiv 2(\bmod 12), k \geq 4\end{cases}
$$

Next we derive a formula for $\operatorname{Tr} T_{q}$ on $S_{k}\left(\Gamma_{0}(3)\right)^{\text {new }}$.

Proposition 4.3. On $S_{k}\left(\Gamma_{0}(3)\right)^{\text {new }}$ we have

$$
\operatorname{Tr} T_{q}= \begin{cases}\operatorname{dim} S_{k}\left(\Gamma_{0}(3)\right)^{\text {new }} \cdot q^{k / 2-1} & \text { for } m \text { even } \\ q^{k / 2-1} & \text { for } m \text { odd, } k \equiv 2,6(\bmod 12) \\ -q^{k / 2-1} & \text { for } m \text { odd, } k \equiv 0,8(\bmod 12) \\ 0 & \text { for } m \text { odd }, k \equiv 4,10(\bmod 12)\end{cases}
$$

Proof. First we consider T_{3}. The eigenvalues of T_{3} acting on $S_{k}\left(\Gamma_{0}(3)\right)^{\text {new }}$ are $\pm 3^{k / 2-1}$ (see [3, Theorem 3]). In order to find the multiplicities of the eigenvalues, we compute

$$
\begin{aligned}
\operatorname{Tr} T_{3} \text { on } S_{k}\left(\Gamma_{0}(3)\right)^{\text {new }} & =\operatorname{Tr} T_{3} \text { on } S_{k}\left(\Gamma_{0}(3), 1\right)-\operatorname{Tr} T_{3} \text { on } S_{k}\left(\Gamma_{0}(3)\right)^{\text {old }} \\
& =\operatorname{Tr} T_{3} \text { on } S_{k}\left(\Gamma_{0}(3), 1\right)-\operatorname{Tr} T_{3} \text { on } S_{k}\left(\operatorname{SL}_{2}(\mathbf{Z})\right) .
\end{aligned}
$$

By the Eichler-Selberg formula we find

$$
\begin{align*}
& \operatorname{Tr} T_{3} \text { on } S_{k}\left(\Gamma_{0}(3), 1\right) \\
& \quad=-\left\{\frac{\rho_{1}^{k-1}-\bar{\rho}_{1}^{k-1}}{\rho_{1}-\bar{\rho}_{1}} h_{w}(-11)+\frac{\rho_{2}^{k-1}-\bar{\rho}_{2}^{k-1}}{\rho_{2}-\bar{\rho}_{2}} h_{w}(-8)+1\right\}, \tag{13}
\end{align*}
$$

where $\rho_{1}, \bar{\rho}_{1}$ are the zeros of $X^{2}-X+3$ and $\rho_{2}, \bar{\rho}_{2}$ are the zeros of $X^{2}-2 X+3$. Applying the same formula for $\operatorname{Tr} T_{3}$ on $S_{k}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)$, we find (13) and the extra terms

$$
-\left(\frac{\rho_{3}^{k-1}-\bar{\rho}_{3}^{k-1}}{\rho_{3}-\bar{\rho}_{3}} h_{w}(-3)\right)-\frac{1}{2}\left(\frac{\rho_{4}^{k-1}-\bar{\rho}_{4}^{k-1}}{\rho_{4}-\bar{\rho}_{4}}\right)\left(h_{w}(-12)+h_{w}(-3)\right),
$$

where $\rho_{3}, \bar{\rho}_{3}$ are the zeros of $X^{2}-3 X+3$ and $\rho_{4}, \bar{\rho}_{4}$ are the zeros of $X^{2}+3$. For $\Delta<-4$, the $h_{w}(\Delta)$ are class numbers and $h_{w}(-3)=1 / 3$.

Note that in the case of $\mathrm{SL}_{2}(\mathbf{Z})$, the character involved is the principal character, which is 1 on all of \mathbf{Z} and has conductor 1 .

Substituting the zeros of $X^{2}-3 X+3$ and $X^{2}+3$, we get

$$
\begin{align*}
\operatorname{Tr} T_{3} \text { on } S_{k}\left(\Gamma_{0}(3)\right)^{\text {new }} & =2.3^{k / 2-2}(\sin (k-1) \pi / 6+\sin (k-1) \pi / 2) \\
& = \begin{cases}0 & \text { for } k \equiv 4,10(\bmod 12) \\
3^{k / 2-1} & \text { for } k \equiv 2,6(\bmod 12) \\
-3^{k / 2-1} & \text { for } k \equiv 0,8(\bmod 12)\end{cases} \tag{14}
\end{align*}
$$

Denoting the multiplicities of the eigenvalues $3^{k / 2-1}$ and $-3^{k / 2-1}$ by A and B, respectively, we now know $A-B$, while $A+B=\operatorname{dim} S_{k}\left(\Gamma_{0}(3)\right)^{\text {new }}$. Because $T_{3^{m}}=\left(T_{3}\right)^{m}$ on $S_{k}\left(\Gamma_{0}(3), 1\right)$, the eigenvalues of $T_{3^{m}}$ on $S_{k}\left(\Gamma_{0}(3)\right)^{\text {new }}$ are $\left(3^{k / 2-1}\right)^{m}$ and $\left(-3^{k / 2-1}\right)^{m}$, while their multiplicities are known as well. From (14) we easily confirm the required result.

The dimension of $S_{k}\left(\Gamma_{0}(3)\right)^{\text {new }}$ for even $k \geq 4$ can be computed explicitly. From the decomposition

$$
S_{k}\left(\Gamma_{0}(3), 1\right)=S_{k}\left(\Gamma_{0}(3)\right)^{\text {new }} \oplus S_{k}\left(\Gamma_{0}(3)\right)^{\text {old }}
$$

we see that $\operatorname{dim} S_{k}\left(\Gamma_{0}(3)\right)^{\text {new }}=\operatorname{dim} S_{k}\left(\Gamma_{1}(3)\right)-2 \operatorname{dim} S_{k}\left(\operatorname{SL}_{2}(\mathbf{Z})\right)$. Combining
(5) and (12), one finds

$$
\operatorname{dim} S_{k}\left(\Gamma_{0}(3)\right)^{\text {new }}=2[k / 12]+ \begin{cases}-1 & \text { for } k \equiv 0(\bmod 12) \tag{15}\\ 1 & \text { for } k \equiv 2,6,8(\bmod 12) \\ 0 & \text { for } k \equiv 4(\bmod 12) \\ 2 & \text { for } k \equiv 10(\bmod 12)\end{cases}
$$

Conclusion. To calculate $\tau_{k}(q)$ for k even, $k \geq 4$, and $q=3^{m}, m \geq 2$, we put Propositions 4.1 and 4.3 and formula (15) for $\operatorname{dim} S_{k}\left(\Gamma_{0}(3)\right)^{\text {new }}$ together. The only quantity left over to compute is the trace of T_{q} on $S_{k}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)$. In the next proposition we include a small list of traces of Hecke operators $\tau_{k}(q)$ for even k.

Proposition 4.4. The trace $\tau_{k}(q)$ of the Hecke operator T_{q}, where $q=3^{m}$ with $m \geq 1$, acting on $S_{k}\left(\Gamma_{1}(3)\right)$, is for even k satisfying $4 \leq k \leq 22$ given by the following table:

k	$\tau_{k}(q)$ on $S_{k}\left(\Gamma_{0}(3)\right)^{\text {old }}$	$\tau_{k}(q)$ on $S_{k}\left(\Gamma_{0}(3)\right)^{\text {new }}$	
		m odd	m even
4	0	0	0
6	0	q^{2}	q^{2}
8	0	$-q^{3}$	q^{3}
10	0	0	$2 q^{4}$
12	$t_{12, m}$	+	$-q^{5}$

For $k=12,16,18,10,22$, the $t_{k, m}$ are respectively given by $t_{k, 0}=2, t_{k, 1}=$ $252,-3348,-4284,50652,-128844$ and

$$
t_{k, m}=t_{k, 1} \cdot t_{k, m-1}-3^{k-1} t_{k, m-1} \quad \text { for } m \geq 2
$$

Proof. For $k=4,6,8,10,14$, the spaces $S_{k}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)$ are zero, therefore $\operatorname{Tr} T_{q}$ on $S_{k}\left(\Gamma_{0}(3)\right)^{\text {old }}$ is zero, and our formulas follow easily.

For $k=12,16,18,20,22$, the spaces $S_{k}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)$ are one-dimensional. If λ is the eigenvalue of T_{3} on $S_{k}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)$, we have $\lambda=\alpha+\beta$ and $3^{k-1}=\alpha \beta$, where α and β are the corresponding eigenvalues of T_{3} on $S_{k}\left(\Gamma_{0}(3)\right)^{\text {old }}$ (see the proof of Proposition 4.1). Now $t_{m}=\operatorname{Tr} T_{3^{m}}$ on $S_{k}\left(\Gamma_{0}(3)\right)^{\text {old }}$ satisfies the recurrence relation

$$
t_{m}=\alpha^{m}+\beta^{m}=\lambda t_{m-1}-3^{k-1} t_{m-2} \quad \text { for } m \geq 2
$$

while $t_{1}=\lambda$ and $t_{0}=2$. We calculate $\lambda=\operatorname{Tr} T_{3}$ on $S_{k}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)$ by the trace formula. The result is

$$
\lambda=-\sum_{t=0}^{3} r_{t} Q_{k-2}(t, 3)-1,
$$

with $r_{0}=\frac{2}{3}, r_{1}=r_{2}=1$, and $r_{3}=\frac{1}{3}$. Combining these observations with Proposition 4.3, we obtain our formulas.

Note that for $k=12$, the eigenvalue of T_{q} on $S_{12}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)$ is $\tau(q)$, where τ is the Ramanujan τ-function. Then $t_{m}=\tau(q)-3^{11} \tau(q / 9)$ for $q=3^{m}$ with $m \geq 2$ and $t_{1}=252$.

5. The Computation of $\tau_{k}(q)$ FOR ODD $k \geq 3$

By (5), we have for odd k that

$$
\operatorname{dim} S_{k}\left(\Gamma_{1}(3)\right)=\operatorname{dim} S_{k}\left(\Gamma_{0}(3), \omega\right)=[k / 3]-1
$$

Since the action of the character ω on $(\mathbf{Z} / 3 \mathbf{Z})^{*}$ differs from the action of the principal character, the space of cusp forms $S_{k}\left(\Gamma_{0}(3), \omega\right)$ consists entirely of newforms. Therefore, the eigenvalues λ of T_{3} acting on $S_{k}\left(\Gamma_{0}(3), \omega\right)$ have absolute values $3^{(k-1) / 2}$ (see [3, Theorem 3]). This implies that the monic polynomial $F_{k}(X)$ with roots $\lambda / 3^{(k-1) / 2}$ is reciprocal. So, to determine $F_{k}(X)$, which has degree $[k / 3]-1$, we only have to know the first $[([k / 3]-1) / 2]+1$ coefficients, provided they are not 0 .

Since $T_{q}=\left(T_{3}\right)^{m}$ on $S_{k}\left(\Gamma_{0}(3), \omega\right)$, we have $\operatorname{Tr} T_{q}=\sum_{\lambda} \lambda^{m}$, and from the Newton identities for power sums we can derive some elementary symmetric functions of the eigenvalues λ from $\operatorname{Tr} T_{3}, \operatorname{Tr} T_{9}$, etc. We only need a few $\operatorname{Tr} T_{q}$ to fix $F_{k}(X)$, bearing in mind that $F_{k}(X)$ is reciprocal. From $F_{k}(X)$ we obtain the characteristic polynomial of T_{3} and from that the eigenvalues λ of T_{3}. Then we can compute $\tau_{k}(q)=\sum_{\lambda} \lambda^{m}$ for odd $k \geq 3$ and $q=3^{m}$ with $m \geq 2$.

Proposition 5.1. The trace $\tau_{k}(q)$ of the Hecke operator T_{q} with $q=3^{m}$ and $m \geq 2$, acting on $S_{k}\left(\Gamma_{0}(3), \omega\right)$, is for $k=3,5,7,9,11,13,15$, and 17 given by the following table:

$$
\begin{aligned}
\tau_{3}(q) & =\tau_{5}(q)=0 \\
\tau_{7}(q) & =(-1)^{m} q^{3}, \\
\tau_{9}(q) & =q^{4} \cdot \operatorname{Trace}\left(\alpha_{9}^{m}\right), \\
\tau_{11}(q) & =q^{5} \cdot \operatorname{Trace}\left(\alpha_{11}^{m}\right), \\
\tau_{13}(q) & =q^{6} \cdot\left\{1+\operatorname{Trace}\left(\alpha_{13}^{m}\right)\right\}, \\
\tau_{15}(q) & =q^{7} \cdot \operatorname{Trace}\left(\alpha_{15}^{m}\right), \\
\tau_{17}(q) & =q^{8} \cdot \operatorname{Trace}\left(\alpha_{17}^{m}\right)
\end{aligned}
$$

The α_{i} are algebraic numbers of absolute value 1 given by

$$
\begin{gathered}
\alpha_{9}=\frac{5+2 \sqrt{-14}}{9}, \quad \alpha_{11}=\frac{-1+4 \sqrt{-5}}{9}, \quad \alpha_{13}=\frac{-25+2 \sqrt{-26}}{27}, \\
\alpha_{15}=\frac{61-16 \sqrt{91}+4 \sqrt{-2002-122 \sqrt{91}}}{243}, \\
\alpha_{17}=\frac{-19+2 \sqrt{8089}+2 \sqrt{-6583-19 \sqrt{8089}}}{243} .
\end{gathered}
$$

In this table, the Trace of an algebraic number is the sum of all its conjugates.
Proof. Since $\operatorname{dim} S_{k}\left(\Gamma_{0}(3), \omega\right)=0$ for $k=3$, 5 , we have that $\tau_{3}(q)=\tau_{5}(q)=$ 0 . For the other values of k we compute the eigenvalues of T_{3} acting on $S_{k}\left(\Gamma_{1}(3)\right)=S_{k}\left(\Gamma_{0}(3), \omega\right)$ in the way indicated above. The trace formula (4) gives us that for weight k :

$$
\begin{aligned}
\operatorname{Tr} T_{3} & =-Q_{k-2}(1,3) H(-11)-Q_{k-2}(-2,3) H(-8)-1 \\
& =-Q_{k-2}(1,3)-Q_{k-2}(-2,3)-1 \\
\operatorname{Tr} T_{9} & =-1-\sum_{\substack{t \equiv 1(\bmod 3) \\
t^{2}<36}} Q_{k-2}(t, 9) H\left(t^{2}-36\right)
\end{aligned}
$$

Using the recurrence relations for the polynomial Q_{k-2} and a small table of class numbers from [7], we get the entries of the table below:

k	$\operatorname{Tr} T_{3}$	$\operatorname{Tr} T_{9}$	$F_{k}(X)$
7	-27	729	$X+1$
9	90	-5022	$X^{2}-\frac{10}{9} X+1$
11	-54	-115182	$X^{2}+\frac{2}{9} X+1$
13	-621	1291059	$(X-1)\left(X^{2}+\frac{50}{27} X+1\right)$
15	2196	-1624860	$X^{4}-\frac{244}{243} X^{3}+\frac{1474}{2187} X^{2}-\frac{244}{243} X=1$
17	-2052	18618660	$X^{4}+\frac{76}{243} X^{3}-\frac{122}{729} X^{2}+\frac{76}{243} X+1$

The eigenvalues λ of T_{3} on $S_{k}\left(\Gamma_{0}(3), \omega\right)$ are $3^{(k-1) / 2} \cdot \alpha$, where α runs over the zeros of $F_{k}(X)$ and

$$
\tau_{k}(q)=\sum_{\lambda} \lambda^{m}=q^{(k-1) / 2} \sum_{\left\{\alpha: F_{k}(\alpha)=0\right\}} \alpha^{m},
$$

which provides us with our formulas for $k=7,9,11,13,15,17$.
Note that by computing the trace of more $T_{3^{m}}$ for $m \geq 3$ we can easily extend Proposition 5.1. Adding $\operatorname{Tr} T_{27}$, for instance, will get us to $k=23$.
6. Weight formulas for $M(q)$

When we combine Theorem 3.1 with Propositions 4.4 and 5.1 , we get explicit formulas for the frequencies A_{i} of words of weight i in $M(q)$. To obtain these formulas, we used the symbolic manipulation language MACSYMA.

We conclude by giving a table of weight formulas. In this table, Ramanujan's τ-function is denoted by τ and the numbers t_{k} denote $\operatorname{Trace}\left(\alpha_{k}^{m}\right)$ as in Proposition 5.1.

Table 6.1
Frequencies A_{i} of small weights i in the Melas codes $M(q)$

$$
\begin{aligned}
& A_{1}=A_{3}=0, \\
& A_{2}=q-1 \text {, } \\
& A_{4}=(q-1)(q-3) / 2 \text {, } \\
& A_{5}=4(q-1)\left(q^{2}+\left((-1)^{m}-14\right) q+36\right) / 15 \text {, } \\
& A_{6}=(q-1)\left(8 q^{3}-165 q^{2}+\left(1240-68(-1)^{m}\right) q-2655\right) / 90 \text {, } \\
& A_{7}=2(q-1)\left(4 q^{4}-108 q^{3}+\left(4 t_{9}-18(-1)^{m}+1215\right) q^{2}\right. \\
& \left.+\left(399(-1)^{m}-6744\right) q+12884\right) / 315, \\
& A_{8}=(q-1)\left(16 q^{5}-560 q^{4}+8225 q^{3}-\left(224 t_{9}-880(-1)^{m}+66255\right) q^{2}\right. \\
& \left.-\left(16296(-1)^{m}-298263\right) q-517825\right) / 2520, \\
& A_{9}=(q-1)\left(16 q^{6}-704 q^{5}+13216 q^{4}\right. \\
& -\left(160 t_{9}-16 t_{11}-216(-1)^{m}+138656\right) q^{3} \\
& +\left(3816 t_{9}-13776(-1)^{m}+895209\right) q^{2} \\
& \left.-\left(3470238-187593(-1)^{m}\right) q+5597820\right) / 11340, \\
& A_{10}=(q-1)\left(32 q^{7}-1728 q^{6}+40512 q^{5}-540519 q^{4}\right. \\
& +\left(6240 t_{9}-720 t_{11}-6120(-1)^{m}+4529826\right) q^{3} \\
& +\left(-110280 t_{9}+360000(-1)^{m}-24851277\right) q^{2} \\
& +\left(85643448-4448871(-1)^{m}\right) q-129806479 \\
& \left.-32(\tau(q)-177147 \tau(q / 9)) / q^{2}\right) / 113400, \\
& A_{11}=(q-1)\left(32 q^{8}-2080 q^{7}+59520 q^{6}-985920 q^{5}\right. \\
& +\left(2288 t_{9}+32 t_{13}-560 t_{11}-440(-1)^{m}+10453958\right) q^{4} \\
& +\left(-136840 t_{9}+16720 t_{11}+110220(-1)^{m}-74203966\right) q^{3} \\
& +\left(1705506 t_{9}-5122359(-1)^{m}+358627785\right) q^{2} \\
& +\left(57077625(-1)^{m}-112429735\right) q+1617492524 \\
& \left.+880(\tau(q)-177147 \tau(q / 9)) / q^{2}\right) / 623700, \\
& A_{12}=(q-1)\left(64 q^{9}-4928 q^{8}+168960 q^{7}-3400320 q^{6}\right. \\
& +44564751 q^{5}-\left(2112 t_{13}-33440 t_{11}+115808 t_{9}\right. \\
& \left.+398775397+16720(-1)^{m}\right) q^{4}-\left(664400 t_{11}\right. \\
& \left.-5020400 t_{9}+2939640(-1)^{m}-2486674179\right) q^{3} \\
& -\left(52961436 t_{9}-145879734(-1)^{m}+10845159710\right) q^{2} \\
& +\left(31412188148-1550485266(-1)^{m}\right) q-43190708055 \\
& \left.+(\tau(q)-177147 \tau(q / 9))\left(1408 q^{4}-46992 q^{3}\right) / q^{5}\right) / 7484400 \text {. }
\end{aligned}
$$

Bibliography

1. G. van der Geer and M. van der Vlugt, Artin-Schreier curves and codes, J. Algebra 139 (1991), 256-272.
2. S. Lang, Introduction to modular forms, Grundlehren der Math. Wiss., no. 222, SpringerVerlag, New York, 1976.
\rightarrow W. W. Li, Newforms and functional equations, Math. Ann. 212 (1975), 285-315.
3. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes, North-Holland, Amsterdam, 1983.
4. C. M. Melas, A cyclic code for double error correction, IBM J. Res. Develop. 4 (1960), 364-366.
5. R. Schoof and M. van der Vlugt, Hecke operators and the weight distributions of certain codes, J. Combin. Theory Ser. A 57 (1991), 163-186.
6. R. Schoof, Non-singular plane cubic curves over finite fields, J. Combin. Theory Ser. A 46 (1987), 183-211.

8 J.-P. Serre, Cours d'arithmétique, Presses Univ. de France, Paris, 1970.

Faculteit Wiskunde en Informatica, Universiteit van Amsterdam, 1018 TV Amsterdam, The Netherlands

E-mail address: geer@fwi.uva.nl
Dipartimento di Matematica, Università di Trento, 38050 Povo (Trento), Italy
E-mail address: schoof@itnvax.cineca.it
Afdeling Wiskunde en Informatica, Universiteit van Leiden, 2300 RA Leiden, The Netherlands

[^0]: Received December 21, 1989; revised March 4, 1991.
 1991 Mathematics Subject Classification. Primary 94B05, 11F11.
 The second author was supported by the Netherlands Organization of Scientific Research.

